
Introduction

When developing an iOS application,

chances are you will need to store

some type of data. For iOS the two

main storage technologies available to

developers are Core Data and SQLite.

Both technologies have the ad-

vantages and disadvantages depend-

ing on the amount and type of data

you need to store and manage. This

newsletter and accompanying sample

application provides an overview of

Core Data and SQLite, compares the

two technologies, and provides a sam-

ple code. The sample application is an

iPhone application that switches be-

tween Core Data and SQLite, thus ena-

bling a direct comparison between these

two technologies. Some simple metrics

are displayed, memory usage, applica-

tion CPU usage, and data store size.

A screen shot of the application is

show to the right.

This article has been published in Dr. Dobbs see:

http://www.drdobbs.com/mobile/ios-data-storage-core-data-vs-sqlite/240168843

Golden Bits

Software ®

Fall, 2014

Volume 1, Issue 1

Golden Bits Tech
Newsletter

Highlights:

 Sample code can be down-

loaded from the Golden

Bits Web site. Use this

link:

http://www.docs-

goldenbits.com/newsletters/

coredata-sqlite/

DataStoreTester.zip

Golden Bits Software, Inc.

3525 Del Mar Heights Road,

Suite 158

San Diego, CA 92130

858-259-3870 phone

858-259-7655 fax

Inside:

Sample Application 1

Core Data 2

SQLite 5

Test Results 7

Golden Bits Software ® is a software engineering firm providing consult-

ing services in a wide range of diverse technologies.

Contact information:

Email: deang@goldenbits.com
Web: goldenbits.com

Screen shot of the sample iPhone app

iOS Core Data vs. SQLite

Comparing Storage Technologies

http://www.drdobbs.com/mobile/ios-data-storage-core-data-vs-sqlite/240168843
http://www.docs-goldenbits.com/newsletters/coredata-sqlite/DataStoreTester.zip
http://www.docs-goldenbits.com/newsletters/coredata-sqlite/DataStoreTester.zip
http://www.docs-goldenbits.com/newsletters/coredata-sqlite/DataStoreTester.zip
http://www.docs-goldenbits.com/newsletters/coredata-sqlite/DataStoreTester.zip

Swift

Apple released Swift at

WWDC this past June 2nd.

Swift is a new

programming language

that can be used to

develop Mac and iOS

applications.

Importantly Swift provides

interoperability with

existing frameworks —

including Core Data. This

means it is possible to use

Core Data and SQLite in

you next Swift project.

Page 2 Golden Bits Tech Newsletter

Sample Data Set

The best way to compare Core Data

and SQLite is to use the same data set

when testing. While this is not a per-

fect approach, since a single data set

cannot possibly illustrate all of the ca-

pabilities of Core Data and SQLite, for

practical purposes it is a reasonable

approach. Our sample data set con-

sist of a list of cars, car manufacturers,

car type, and car details. For a particu-

lar car, we want to store the car type,

details, and the manufacturer infor-

mation. The tables below (Table 1 & 2)

illustrates the data set.

Core Data Primer

A quick primer on Core Data follows;

however, to really understand Core

Data you should read Apple’s “Core

Data Programming Guide” on the de-

veloper.apple.com web site.

Core Data’s focus is on objects rather

than a traditional table-driven relational

database approach. When storing da-

ta, you are actually storing an object’s

contents, where an object is represent-

ed by an Objective-C class that inherits

from the NSManagedObject class. A

typical application will have several ob-

jects used together, forming an object

graph. For our sample data set, a car

object contains car type, details, and

manufacturer objects as members.

Your application modifies the objects

directly, when saving the objects the

NSManagedObjectContext save meth-

od is called. Conversely, your applica-

You can download the sample application from this link:

http://www.docs-goldenbits.com/newsletters/coredata-sqlite/DataStoreTester.zip

Core Data vs. SQLite

Car Type Details Manufacturer

Pinto, $16,000 Compact AC, Automatic transmission
Ford, Dearborn MI, 100,000 employ-

ees

Tahoe, $45,000 SUV Leather, Power Windows GM, Dearborn, MI, 100,00 employees

Ferrari, $15,000 Sports Car V12 Ferrari Italy.

If you don’t like cars, substitute surfboards. For example:

Bike Type Details Manufacturer

Slinger, $850 High Performance 6’, single fin Infinity, Dana Point, CA 50 employees

Table 2

Table 1

http://www.docs-goldenbits.com/newsletters/coredata-sqlite/DataStoreTester.zip

Page 3 Volume 1, Issue 1

tion will fetch stored objects using the NSMan-

agedObjectContext object. Core Data handles

all of the details of saving the changes. The

above figure (Figure 1) shows the main com-

ponents of Core Data .

The Data Model is where you define your data

objects and their relations. This is done using

the Data Model Editor which is part of the

XCode IDE. The data model file is stored local-

ly (on your development system) as an XML

file; however when you application is built, this

file is compiled into a binary file (with a .momd

extension) that is bundled with your iOS appli-

cation. Each object is referred to as an

“Entity” where an Entity contains one or more

Figure 1

Core Data vs. SQLite

Car
Car

Managed Object Context
NSManagedObjectContext

Persistant Store Coordinator
NSPersistentStoreCoordinator

Physical store
SQLite, File, iCloud

DataModel
(compiled .momd file,

part of application
bundle)

Car

NSManagedObjectModel

NSManagedObject

Car

Car

Car

CarType

attributes. Don’t get confused with the terminology

here, an Entity is an object and an attribute is a

member of your object. XCode will generate the

source code (.m and .h files) for the classes defined

in the Data Model Editor. To do so, in XCode select

the data model and then the menu selection: “Editor/

Create NSManagedObject Subclass”.

An important design consideration for your objects is

the relationships between them. By relationship I am

referring to when one object contains a reference to

another. Is this a reference to many (one-to-many)?

Or a reference each way too many (many-to-many)?

For example, in the sample application the Car object

references a CarType object where the CarType ob-

ject is also referenced by other Car object instances.

This is a one-to-many relationship between the

CarType and Car object, one CarType can reference

many Car objects. This is similar in concept to a SQL

foreign key and is important to understand because

any change to the CarType record will affect all of the

Car objects. Figure 2 illustrates this relationship.

T h e P e r s i s t e n t S t o r e C o o r d i n a t o r

(NSPersistentStoreCoordinator) handles the details

of the actual physical storage, whether the storage is

Figure 2

Core Data vs. SQLite

Page 4 Golden Bits Tech Newsletter

a SQLite database, binary file, or iCloud. Your

application doesn’t know or care, it just works

with the application objects directly. The nice

thing about using Core Data is the ability to use

these different storage types seamlessly. The

Persistent Store Coordinator can handle differ-

ent store instances. For example, you might

want to store frequently changing price data

(such as gas prices) using iCloud and static data

locally (such as gas station location). How you

model, store, and manage your data should be

driven by your application’s requirements. The

Persistent Store Coordinator uses the compiled

data model file to determine the structure and

organization of the objects being stored.

T h e M a n a g e d O b j e c t C o n t e x t

(NSManagedObjectContext) works with the Per-

sistent Store Coordinator to fetch, save, and

track the collection of objects. These are power-

ful features, the application does not have to

track if a one object in a collection has been

modified or the details of storing the objects.

The Managed Object Context also acts as

scratch pad of sorts for your object collection. If

your application makes changes to the objects

and later needs to discard these changes, no

problem; the application can use the Undo Man-

ager (NSUndoManager) or simply resets the

Figure 3

Managed Object Context (using the reset method)

and discard references to any of the objects.

There can be more than one Managed Object Context

instance for a single store. For example, an applica-

tion may use different contexts for different fetch

results. As a result, an object instance can exist in

both contexts simultaneously potentially causing da-

ta inconsistencies. Each managed object is assigned

a unique id when the object is saved (a temporary id

is assigned if the object has never been saved), an

application can use this id to insure data consistency

when using multiple contexts. However now the ap-

plication is forced to track object changes, which

doesn’t make sense, that’s the job of Cord Data. In

short, use multiple contexts if there is a compelling

reason

The Figure 3 below illustrates the concept of how the

Managed Object Context manages the core data ob-

jects (NSManagedObject).

One of the downsides of the Managed Object Context

is all of the objects are operated on together; it is not

possible to save just one NSManagedObject in-

stance, all are saved at once. If your application

must work with a lot of NSManagedObjects at once,

be careful about the amount of memory used. In the

sample application, when creating 250,000 Car rec-

ords, 260 Mbyte is used. To put this memory usage

NSManagedObjectContext

Car
Car

Car

NSMangedObject

List of Managed Objects

Page 5 Volume 1, Issue 1

Core Data vs. SQLite

in context, the iPhone 5s has 1 GigaByte of

memory, the iPhone 4s has 512 MByte of

memory. On an iPhone 5s, if more than

350,000 records are created, the test applica-

tion receives a memory warning from the phone

iOS operating system directly. (-(void)

didReceiveMemoryWarning is called). Yes

260 MByte is a lot, but remember that each of

the 250,000 objects are in memory, fully real-

ized, meaning all of the Car member variables

are also in memory. If you restart the sample

application and fetch these 250,000 records you

just created, you will notice the amount of

memory used is 105 Mbyte. Much less than the

260 MByte used to create the records – what

happen? The answer is due to one of Core Data’s

powerful feathers – object faulting.

Object faulting is the ability of the Managed Ob-

ject Context to load an object in memory when it

is accessed, if the object is never accessed the

memory is saved. This happens behind the

scenes, your application runs along happily. In

the attached sample application, when access-

ing the CarType from the Car object, if the

CarType isn’t in memory Core Data will automati-

cally load it in memory with the correct data for

you. The NSManagedObject method isFault

enables your application to determine if the ob-

ject is truly in memory or maybe loaded into

memory when accessed.

Creating a managed object is a little different,

instead of the usual alloc init pattern to

create a new object instance, an application

should call the NSEntityDescription in-

sertNewObjectForEntityForName meth-

od using the Managed Object Context as an in-

put argument. The following code snippet shows how

the sample code Car object is created:

NSEntityDescription insertNewObject-

ForEntitryForName is actually a convenience

method, underneath the hood an NSManagedObject is

created for the entity @Car and inserted into the

NSManagedObjectContext. The important point here is

to understand that the Managed Object Context knows

about all of the objects.

Core Data provides a lot of tools and capabilities to

handle almost any type of data. The downside is that

has a lengthy learning curve.

In the accompanying sample application, all of the Core

Data code is located in the source files

GB_CarsCoreData.m and .h.

SQLite

SQLite an open source light weight, robust, well sup-

ported, self-contained, cross platform, relational data-

base that is very popular. Chances are that you have

used SQLite at some point in the past; it is a very good

option for storing application data. The SQLite web site

is sqlite.org and is worth taking a moment and brows-

ing the web site. Unlike most open source projects, the

SQLite documentation and support is excellent. SQLite

version 3.7.13 is supported on iOS 7 and 8. SQLite is

also supported on Android and Windows phones, which

is a huge benefit. If you are developing a mobile appli-

cation targeting multiple platforms, you would be crazy

not to use SQLite.

SQLite stores data in tables, where a table contains

one or more columns, each column contains data for a

Car *car = [NSEntityDescription

 insertNewObjectForEntityForName:@"Car"

 inManagedObjectCotext:_managedObjectContext];

Page 6 Volume 1, Issue 1

Core Data vs. SQLite

specific data type. One of the tasks an RDMS is

good at is handling a normalized data set. In-

stead of each table containing all of the possible

columns of data, resulting in duplicated data for

each table row, the tables are typically organized

to reference another table (via a key), that con-

tains the duplicated data. In the sample applica-

tion, the manufacture information is kept in a

separate mfg_info table which is referenced by

the car table.

You application interacts with SQLite via the SQL

language and the SQLite C api (see sqlite.h).

This means to insert data into the database an

“insert” SQL statement must be created along

with the data to insert. The following snippet

shows the insert statement used by the sample

application.

Conversely to fetch data a “select” SQL state-

ment is needed. For example, the following snip-

pet shows how a select statement is used to

fetch all of the car records:

This is the simple case where all of the car table

information is fetched; however, things get com-

plicated quickly when you want to get all of the

information for a specific car. In the sample ap-

plication, this means multiple join statements as

show in the next code snippet.

As you can see, even a moderately involved data

set requires a solid understanding of the SQL

syntax and behavior. Another drawback to SQLite

is the tedious nature of insuring that the col-

umns and data are in the correct order. For ex-

ample, when iterating through the SELECT re-

sults if you make a mistake for the column num-

ber in the sqlite3_column_*() call, the wrong data will

be fetched. This can easily happen when additional

columns are added or removed later.

SQLite implements a C API, thus you will have to con-

vert between NSStrings * and char * strings when your

application interacts with the database. There are Ob-

jective C wrappers for SQLite, the most popular being

the FMDB which can be downloaded from this URL:

https://github.com/ccgus/fmdb. For most applica-

tions, using the SQLite API directly is not overly cumber-

some. The attached sample application uses the

SQLite API directly.

Differences between Core Data and SQLite

Core Data and SQLIte are fundamentally different, so it

is difficult to compare the two technologies. However,

from a developer’s viewpoint can gauge how these dif-

ferences manifest themselves in an application. What

is the cost and benefit of each approach? The accom-

panying sample iOS iPhone application is designed to

test both technologies. From the main screen, select

either Core Data or SQLite, create the desired number

of records, and select the Car tab to fetch the records.

The memory usage number is for the entire application

and is updated once per second. The storage size is

the size of the actual persistent file.

The following tables shows the differences between

Core Data and SQLite.

insert into car (model, msrp, year,

mfg_id, cartype_id, cardetails_id)

values (“Pinto”, 17000, 1970, 1, 2,

3)

select * from car

select car.model, car.year,

car.msrp, cardetails.detailgroup,

cardetails.info_1,

cardetails.info_2, manufactur-

er.hq_location, manufacturer.name,

manufacturer.num_employees,

cartype.type, cartype.type_desc from

car inner join cartype on

car.cartype_id = cartype.id inner

join cardetails on car.cardetails_id

= cardetails.id inner join manufac-

turer on car.mfg_id = manufactur-

er.id where car.id = %@

https://github.com/ccgus/fmdb

Page 7 Volume 1, Issue 1

Core Data vs. SQLite

Memory Usage

Core Data uses more memory, from 40% to 100% more than SQLite. This makes sense consider-

ing how Core Data is designed. Specifically how the NSManagedObjectContext tracks all of the ob-

jects, where each object has a memory footprint of some size depending if the object’s contents

have been faulted in (realized in memory versus being a fault). See Table 3 below.

NOTE: 5s == iPhone 5s, 4s == iPhone 4s.

A side note about memory testing. When creating records the entire Car record is created in

memory and the higher memory usage reflects this. However, most user scenarios do not involve

creating a large number of records. A better measurement of the memory usage is on application

startup and fetching all of the Car records, which is exactly what the above table reflects. To get

this measurement in testing, the application was restarted (terminated versus put in the back-

ground) and the records were re-fetched.

Storage Size

Core Data uses more storage space, a lot more storage space, approximately 4x more than SQLite

as Table 4 below shows.

Speed

Both Core Data and SQLite are fast when fetching records. For the iPhone 5s, the differences are

slight; however, for the 4s, Core Data is nearly 2x faster. This table shows just one operation, fetch-

ing all of the Car records. See Table 5 (below) for details.

Record Type 50,000 Recs 100,000 Recs 200,000 Recs

Core Data
32 MB (5s)

24 MB (4s)

53 MB (5s)

38 MB (4s)

91 MB (5s)

67 MB (4s)

SQLite
21 MB (5s)

16 MB (4s)

29 MB (5s)

22 MB (4s)

46 MB (5s)

36 MB (4s)

Record Type 50,000 Recs 100,000 Recs 200,000 Recs

Core Data
6532 KB (5s)

6412 KB (4s)

13296 KB (5s)

13180 KB (4s)

27004 KB (5s)

2,912 KB (4s)

SQLite
1676 KB (5s)

1676 KB (4s)

3364 KB (5s)

3364 KB (4s)

6824 KB (5s)

6824 KB (4s)

Record Type 50,000 Recs 100,000 Recs 200,000 Recs

Core Data
107 msec (5s)

397 msec (4s)

230 msec (5s)

850 msec (4s)

475 msec (5s)

1644 msec (4s))

SQLite
140 msec (5s)

730 msec (4s)

280 msec (5s)

1447 msec (4s)

580 msec (5s)

3077 msec (5s)

Table 3

Table 4

Table 5

Golden Bits Project Experience

Tech Newsletter published by Golden Bits Software, Inc. Copyright (c) 2002-14. All rights reserved.
Disclaimer: All mater ial is presented " as is" without warranty of any kind, either expressed or implied, including, without
limitation, the implied warranties of merchantability or fitness for a particular purpose. Golden Bits shall not be liable for any
damages whatsoever related to the use of any information presented in these materials. The sample code provided is just that,
samples and is not intended for any commercial use. The information presented is as accurate as possible, however mistakes can
and do happen. Please inform Golden Bits by email with any errors. Golden Bits shall not be responsible for any damages owing
to editorial errors.

Embedded Devices/OS. Experience with embedded OS systems: Linux, TI DSP, and Threadx. Developed application and

system level code including USB enhancements and embedded management system for a large blade enclosure. Ported

embedded Linux driver code to Power PC 44GX and Broadcom 1255 processors.

Digital Media, Designed and developed media pipeline for encoding video using H264, Mpeg encoders.

Device Drivers, Windows, Linux, Mac. Developed a variety of Windows, Linux, and Mac rivers to handle network packet

inspection, USB devices, SCSI Fibre channel adapters, ethernet adapters, and job scheduling to a device.

Set Top Box. Helped port a STB to new Broadcom 7405 chip. Developed a script language and compiler used to code the

television UI (guide menus, channel select).

Security. Experienced with PKI, x509 certificates, IPsec (StrongSwan), and RSA encryption.

SCSI Port driver for Fibre Channel. Designed the operating system layer for a SCSI storage driver (XP, Win2K, NT, Linux)

for a fibre channel HBA (host bus adapter – PCI/SBUS card).

Page 8 Volume 1, Issue 1

Core Data vs. SQLite

Summary

No one technology, framework, or diet pill will make your life instantly better. When designing an

application, a lot of design criteria must be considered.

Hopefully this article will provide you with some guidance when selecting a storage approach for

your next iOS application. I encourage you to download the sample application and take it for a

spin.

Some final key points:

SQLite:

SQLite is, as advertised, light weight.

SQLite uses less memory and storage space.

SQLite can be tedious and error prone to code.

SQLite is supported on Android and Windows Phone.

Core Data:

Learning curve, takes some study to understand.

Objects are easier to work with.

Underlying storage details are handled atomically (support for iCloud).

Undo and Redo features.

